Protein secondary structure prediction based on position-specific scoring matrices.
نویسنده
چکیده
A two-stage neural network has been used to predict protein secondary structure based on the position specific scoring matrices generated by PSI-BLAST. Despite the simplicity and convenience of the approach used, the results are found to be superior to those produced by other methods, including the popular PHD method according to our own benchmarking results and the results from the recent Critical Assessment of Techniques for Protein Structure Prediction experiment (CASP3), where the method was evaluated by stringent blind testing. Using a new testing set based on a set of 187 unique folds, and three-way cross-validation based on structural similarity criteria rather than sequence similarity criteria used previously (no similar folds were present in both the testing and training sets) the method presented here (PSIPRED) achieved an average Q3 score of between 76.5% to 78.3% depending on the precise definition of observed secondary structure used, which is the highest published score for any method to date. Given the success of the method in CASP3, it is reasonable to be confident that the evaluation presented here gives a fair indication of the performance of the method in general.
منابع مشابه
Predicting secondary structures, contact numbers, and residue-wise contact orders of native protein structures from amino acid sequences using critical random networks
Predictions of one-dimensional protein structures such as secondary structures and contact numbers are useful for predicting three-dimensional structure and important for understanding the sequence-structure relationship. Here we present a new machine-learning method, critical random networks (CRNs), for predicting one-dimensional structures, and apply it, with position-specific scoring matrice...
متن کاملPredicting Secondary Structures, Contact Numbers, and Residue-wise Contact Orders of Native Protein Structure from Amino Acid Sequence by Critical Random Networks
Prediction of one-dimensional protein structures such as secondary structures and contact numbers is useful for the three-dimensional structure prediction and important for the understanding of sequence-structure relationship. Here we present a new machine-learning method, critical random networks (CRNs), for predicting one-dimensional structures, and apply it, with position-specific scoring ma...
متن کاملROTEIN structure prediction from the amino acid sequence is an fundamental and challenging problem in molecular biology. Stimulated by the difficulty of the overall structure prediction, computational methods for the prediction
State-of-the-art methods for secondary structure (Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility (Sable, ACCpro) predictions use evolutionary profiles represented by the position specific scoring matrix (PSSM). It has been demonstrated that evolutionary profiles are the most important features in the feature space for these predictions. Unfortunately applying PSSM matrix leads t...
متن کاملROTEIN structure prediction from the amino acid sequence is an fundamental and challenging problem in molecular biology. Stimulated by the difficulty of the overall structure prediction, computational methods for the prediction
State-of-the-art methods for secondary structure (Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility (Sable, ACCpro) predictions use evolutionary profiles represented by the position specific scoring matrix (PSSM). It has been demonstrated that evolutionary profiles are the most important features in the feature space for these predictions. Unfortunately applying PSSM matrix leads t...
متن کاملPhysicochemical Position-Dependent Properties in the Protein Secondary Structures
Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 1999